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A few years ago Nesbet [l] introduced an algorithm for the determination of 
eigenvalues and eigenvectors of large symmetric matrices. The algorithm has 
recently been modified by Shavitt [2] for efficient application to sparse symmetric 
matrices and extended by Bender and Shavitt [3] to cover extremal eigenvalues 
of nonsymmetric matrices. A well-known property of the Rayleigh quotient [4] 
is exploited, namely, that if we have estimates b and c for corresponding left and 
right eigenvectors of a normal (4) matrix A, and if the absolute errors in b and c 
are of order E, then the generalized Rayleigh quotient E = (WAc)/(b’c) gives an 
estimate of the corresponding eigenvalue, accurate to order c2. When the matrix 
is non-normal, Wilkinson [4] has shown that E may still provide a good estimate 
of the eigenvalue; the error in this case is of order e2/@Tc) and in practice one is 
unlikely to be concerned with cases where (hTc) is small since the eigenvalue problem 
is not then a priori well-posed [5]. In the most general version of the algorithm [3] 
we start with trial vectors b and c and compute E as an estimate of the eigenvalue, 
the next trial values of b and c being generated by applying one step of the simple 
Gauss-Seidel (GS) iterative process [6] to the matrix A - EI (where I is the unit 
matrix). It is at this point that the convergence can be improved. Knowing that 
in the solution of linear equations the extrapolated GS (or successive over-relaxa- 
tion (SOR)) method can frequently be made to converge faster than the basic 
GS scheme, we found it natural to investigate the effect of replacing the single GS 
iteration in Nesbet’s algorithm by an SOR iteration. In this paper we show how 
this modification may very simply be incorporated in the iterative scheme given by 
Bender and Shavitt [3] and we discuss the results of applying the modified algorithm 
to some matrices which arise in the statistical mechanics of lattice systems. 
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THE SOR METHOD 

Both GS and SOR are members of the same class of iterative methods 
for the solution of sets of linear equations. To solve the set of equations Ax = b 
we split the matrix A into the form A = M - N and then iterate as follows: 

x, arbitrary, 

fi,+l = Nx, + b, I71 = 1, 2, 3 ).... (1) 

In practice the splitting of A is chosen to make the solution of (1) simple or even 
trivial1 The GS method is defined by the splitting 

M=D-E, 

N = F, 
(2) 

where D is diagonal and E, F are, respectively, strictly lower and upper triangular 
matrices. However, this particular splitting of A is just one member of the one- 
parameter family of splittings defined by 

M(o) = (l/w)(D - WE), 

N(o) = (l/w){(l - W) D + wF}. 
(3) 

SOR is the iterative scheme defined by the splitting (3) and it can be shown [6] 
that SOR may converge when 0 < w  < 2. If w  = 1 we retrieve the basic GS 
scheme, but it is frequently found that with the choice of an alternative value of o 
(usually between 1 and 2) we achieve faster convergence to the solution of a set 
of linear equations. 

MODIFICATION OF THE ALGORITHM 

The most general current version of the algorithm was given by Bender and 
Shavitt [3] and we now show how their scheme may be modified to incorporate 
SOR in the iterative solution of the eigenvalue problem 

AC = EC, 

bA = Eb. 
(4) 

Given estimates b and c for the right and left eigenvectors we guess initially 
that the eigenvalue is 

E = N/D = (b=Ac)/(Wc). (5) 

1 The requirement that the iterative scheme converges leads to restrictions on the choice of 
splitting. This problem is discussed by Varga [6]. 
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Bender and Shavitt modify b, c and E thus: 

a, Auncn - EC,, , (6) 

a,’ = i bAAA, - Eb, , (7) 
A=1 

AC, = u,ltE - A,,), (8) 

4, = G’@ - A,,), (9) 

AD = W,) G + WkJ + t&)(4), W) 

AE = Ab,u,/(D + AD) = Ac,u,‘/@ + AD). (11) 

Equations (8) and (9) are the results of a single GS iteration on the Eqs. (4). 
Equation (10) is obvious. Equation (11) may be verified by evaluating the Rayleigh 
quotient 

E + AE = ((b + Ab)T A(c + Ac))/((b + Ab)T (c + AC)). (12) 

To incorporate SOR into the algorithm we have only to replace Eqs. (8), (9), and 
(11) by 

AC, = wd(E - A,), (8’) 

Ab, = wu,‘/(E - A,,), (9’) 

AE = (Ab,) a,(2 - w)/(D + AD). (11’) 

These equations are obtained in a similar manner to (8), (9), and (11). 

USE OF THE MODIFIED ALGORITHM 

The algorithm, modified to incorporate SOR, was tested by the author on some 
sequences of matrices {IQ, which arise in a problem in lattice statistics [7]. The 
matrices are irreducible and the matrix elements, all nonnegative, are functions 
of the real positive variable z; the quantities of physical interest derive from the 
eigenvalue of maximum modulus (necessarily real and positive) and its derivatives 
with respect to z. Denoting by E, b, c, respectively, the maximum eigenvalue and 
the corresponding left and right eigenvectors of B, , and by K,’ the matrix whose 
elements are the derivatives of the elements of K, , we can easily show that 

dE/dz = (b%‘c)/@Tc). (13) 
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TABLE I 

Properties of the Matrices K, 

m Dimension of rC, Percentage of nonzero elements 

2 3 55.6 
4 5 44 
6 10 28 
8 19 20.2 

10 41 14.1 
12 91 9.1 
14 241 6.1 

’ m=lO 

h 

0' I , 1 I 1 I I 
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

w 

FIG. 1. Variation of n(o), the number of iterations required for convergence with w, the SOR 
acceleration parameter for the matrices K4, KB , K8, K,, . The original algorithm corresponds 
to w = 1. 
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Thus to compute dE/dz we require (to high accuracy) a knowledge of b and c as 
well as of E. 

For each value of z we had a sequence of matrices, {K, : m = 2,4, 6,...}, the 
dimension of the matrices increasing approximately exponentially with m while 
the proportion of nonzero elements decreased slowly with m (See Table I). We 
set z = 1 and studied the matrices K, to K,, . Using for b and c the deliberately 
poorly chosen starting vectors (1, l,..., 1) and its transpose, we noted, for a number 
of values of w, the number of iterations n(w) required before db, and AC, were 
less than a certain tolerance (10-e) for all CL. To eliminate spurious effects due to 
the very inaccurate starting vectors, ten iterations with w  = 1 were executed 
before setting w  to any other chosen value. The variation of n(w) with w  is shown 
in Fig. 1 and it is clear that there is an optimum value of w  around w  = 1.4 for 
which substantial acceleration of convergence is achieved. The work was repeated 
for a few different values of z with the same results. Similar tests of the algorithm 
have been carried out on matrices arising from different problems in lattice statistics 
and have yielded the same qualitative conclusion, i.e., there is an optimum value 
of w  for which the convergence is substantially faster than with w  = 1. 

The obvious disadvantage of the modified algorithm is the lack of a simple 
method of estimating the optimum value of w. However, this can be overcome in 
two situations: 

(i) If we have a family of matrices of increasing dimension a few test calcula- 
tions on the smaller matrices may indicate a suitable value of w. (e.g., w  = 1.4 
proved satisfactory for the aforementioned matrices K,, and K,, over a wide 
range of values of z), 

(ii) We are likely to be using the algorithm only for matrices which are 
too large to store in the core of the computer as an ordinary two-dimensional 
array (since otherwise methods based on similarity transformations are superior 
[4]), in which case each iteration may require a few seconds of computer time. In 
circumstances where the user may intervene during execution of the program, the 
value of o may be changed if the convergence is slow. The author has found this 
“experimental” approach successful in dealing with a number of matrices of 
dimension greater than 250. 
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